7 класс

Физика — наука о природе. Физические явления, вещество, тело, материя. Физические свойства тел. Основные методы изучения, их различие. Понятие о физической величине. Международная единиц. Простейшие система измерительные приборы. Цена Нахождение деления шкалы прибора. погрешности измерения. Современные достижения науки. Роль физики и ученых нашей страны в развитии технического прогресса. Влияние технологических процессов на окружающую среду.

Представления о строении вещества. Опыты, подтверждающие, что все вещества состоят из отдельных частиц. Молекула — мельчайшая частица вещества. Размеры молекул. Диффузия в жидкостях, газах и твердых телах. Связь скорости диффузии и температуры тела. Физический смысл взаимодействия молекул. Существование сил взаимного притяжения и отталкивания молекул. Явление смачивания и несмачивания тел. Агрегатные состояния вещества. Особенности трех агрегатных состояний вещества. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярного строения.

Механическое движение. Траектория движения тела, путь. Основные единицы пути в СИ. Равномерное и неравномерное движение. Относительность движения. Скорость равномерного и неравномерного движения. Векторные и скалярные физические величины. Определение скорости. Определение пути, пройденного телом при равномерном движении, по формуле и с помощью графиков. Нахождение времени движения тел. Явление инерции. Проявление явления инерции в быту и технике. Изменение скорости тел при взаимодействии. Масса. Масса — мера инертности тела. Инертность — свойство тела. Определение массы тела в результате его взаимодействия с другими телами. Выяснение условий равновесия учебных весов. Плотность вещества. Изменение плотности одного и того же вещества в зависимости от его агрегатного состояния. Определение массы тела по его объему и плотности, объема тела по его массе и плотности. Изменение скорости тела при действии на него других тел. Сила причина изменения скорости движения, векторная физическая величина. Графическое изображение силы. Сила — мера взаимодействия тел. Сила тяжести. Наличие тяготения между всеми телами. Зависимость силы тяжести от массы тела. Свободное падение тел. Возникновение силы упругости. Природа силы упругости. Опытные подтверждения существования силы упругости. Закон Гука. Вес тела. Вес тела — векторная физическая величина. Отличие веса тела от силы тяжести. Сила тяжести на других планетах. Изучение устройства динамометра. Измерения сил с помощью динамометра. Равнодействующая сил. Сложение двух сил, направленных по одной прямой в одном направлении и в противоположных. Графическое изображение равнодействующей двух сил. Сила трения. Измерение силы трения скольжения. Сравнение силы трения скольжения с силой трения качения. Сравнение силы трения с весом тела. Трение покоя. Роль трения в технике. Способы увеличения и уменьшения трения.

Давление. Формула для нахождения давления. Единицы давления. Выяснение способов изменения давления в быту и технике. Причины возникновения давления газа. Зависимость давления газа данной массы от объема и температуры. Различия между твердыми телами, жидкостями и газами. Передача давления жидкостью и газом. Закон Паскаля. Наличие давления внутри жидкости. Увеличение давления с глубиной погружения. Обоснование расположения поверхности однородной жидкости в сообщающихся сосудах на одном уровне, а жидкостей с разной плотностью — на разных уровнях. Устройство и действие шлюза. Атмосферное давление. Влияние атмосферного давления на живые организмы. Явления, подтверждающие существование атмосферного давления. Определение атмосферного давления.

Опыт Торричелли. Расчет силы, с которой атмосфера давит на окружающие предметы. Знакомство с работой и устройством барометра-анероида. Использование его при метеорологических наблюдениях. Атмосферное давление на различных высотах. Устройство и принцип действия открытого жидкостного и металлического манометров. Принцип действия поршневого жидкостного насоса и гидравлического пресса. Физические основы работы гидравлического пресса. Причины возникновения выталкивающей силы. Природа выталкивающей силы. Закон Архимеда. Плавание тел. Условия плавания тел. Зависимость глубины погружения тела в жидкость от его плотности. Физические основы плавания судов и воздухоплавания. Водный и воздушный транспорт.

Механическая работа, ее физический смысл. Мощность — характеристика скорости выполнения работы. Простые механизмы. Рычаг. Условия равновесия рычага. Момент силы — физическая величина, характеризующая действие силы. Правило моментов. Устройство и действие рычажных весов. Подвижный и неподвижный блоки — простые механизмы. Равенство работ при использовании простых механизмов. «Золотое правило» механики. Центр тяжести тела. Центр тяжести различных твердых тел. Статика — раздел механики, изучающий условия равновесия тел. Условия равновесия тел. Понятие о полезной и полной работе. КПД механизма. Наклонная плоскость. Определение КПД наклонной плоскости. Энергия. Потенциальная энергия. Зависимость потенциальной энергии тела, поднятого над землей, от его массы и высоты подъема. Кинетическая энергия. Зависимость кинетической энергии от массы тела и его скорости. Переход одного вида механической энергии в другой. Переход энергии от одного тела к другому.

8 класс

Тепловое движение. Особенности движения молекул. Связь температуры тела и скорости движения его молекул. Движение молекул в газах, жидкостях и твердых телах. Превращение энергии тела в механических процессах. Внутренняя энергия тела. Увеличение внутренней энергии тела путем совершения работы над ним или ее уменьшение при совершении работы телом. Изменение внутренней энергии тела путем теплопередачи. Теплопроводность. Различие теплопроводностей различных веществ. Конвекция в жидкостях и газах. Объяснение конвекции. Передача энергии излучением. Особенности видов тепло передачи. Количество теплоты. Единицы количества теплоты. Удельная теплоемкость вещества. Формула для расчета количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении. Устройство и применение калориметра. Топливо как источник энергии. Удельная теплота

сгорания топлива. Формула для расчета количества теплоты, выделяемого при сгорании топлива. Закон сохранения механической энергии. Превращение механической энергии во внутреннюю. Превращение внутренней энергии в механическую. Сохранение энергии в тепловых процессах. Закон сохранения и превращения энергии в природе. Агрегатные состояния вещества. Кристаллические тела. Плавление и отвердевание. Температура плавления. График плавления и отвердевания кристаллических тел. Удельная теплота плавления. Объяснение процессов плавления и отвердевания на основе знаний о молекулярном строении вещества. Формула для расчета количества теплоты, необходимого для плавления тела или выделяющегося при его кристаллизации. Парообразование и испарение. Скорость испарения. Насыщенный и ненасыщенный пар. Конденсация пара. Особенности процессов испарения и конденсации. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Процесс кипения. Постоянство температуры при кипении в открытом сосуде. Физический смысл удельной теплоты парообразования и конденсации. Влажность воздуха. Точка росы. Способы определения влажности воздуха. Гигрометры: конденсационный и волосной. Психрометр. Работа газа и пара при расширении. Тепловые двигатели. Применение закона сохранения и превращения энергии в тепловых двигателях. Устройство и принцип действия двигателя внутреннего сгорания (ДВС). Экологические проблемы при использовании ДВС. Устройство и принцип действия паровой турбины. КПД теплового двигателя.

Электризация тел. Два рода электрических зарядов. Взаимодействие одноименно и разноименно заряженных тел. Устройство электроскопа. Понятия об электрическом поле. Поле как особый вид материи. Делимость электрического заряда. Электрон — частица с наименьшим электрическим зарядом. Единица электрического заряда. Строение атома. Строение ядра атома. Нейтроны. Протоны. Модели атомов водорода, гелия, лития. Ионы. Объяснение на основе знаний о строении атома электризации тел при соприкосновении, передаче части электрического заряда от одного тела к другому. Закон сохранения электрического заряда. Деление веществ по способности проводить электрический ток на проводники, полупроводники И диэлектрики. Характерная особенность полупроводников. Электрический ток. Условия существования электрического тока. Источники электрического тока. Электрическая цепь и ее составные части. Условные обозначения, применяемые на схемах электрических цепей. Природа электрического тока в металлах. Скорость распространения электрического тока в проводнике. Действия электрического тока. Превращение энергии электрического тока в другие виды энергии. Направление электрического тока. Сила тока. Интенсивность электрического тока. Формула для определения силы тока. Единицы силы тока. Назначение амперметра. Включение амперметра в цепь. Определение цены деления его шкалы. Электрическое напряжение, единица напряжения. Формула для определения напряжения. Измерение напряжения вольтметром. Включение вольтметра в цепь. Определение цены деления его шкалы. Электрическое сопротивление. Зависимость силы тока от напряжения при постоянном сопротивлении. Природа электрического сопротивления. Зависимость силы тока от сопротивления при постоянном напряжении. Закон Ома для участка цепи. Соотношение между сопротивлением проводника, его длиной и площадью поперечного сечения. Удельное сопротивление проводника. Принцип действия и назначение реостата. Подключение реостата в цепь. Последовательное

соединение проводников. Сопротивление последовательно соединенных проводников. Сила тока и напряжение в цепи при последовательном соединении. Параллельное соединение проводников. Сопротивление двух параллельно соединенных проводников. Сила тока и напряжение в цепи при параллельном соединении. Работа электрического тока. Формула для рас чета работы тока. работы тока. электрического Единицы Мощность тока. расчета мощности тока. Формула для вычисления работы электрического тока через мощность и время. Единицы работы тока, используемые на практике. Расчет стоимости израсходованной электроэнергии. Формула для расчета количества теплоты, выделяемого проводником при протекании по нему электрического тока. Закон Джоуля—Ленца. Конденсатор. Электроемкость конденсатора. Работа электрического поля конденсатора. Единица электроемкости конденсатора. используемые в освещении. вилы ламп, Устройство накаливания. Тепловое действие тока. Электрические нагревательные приборы. Причины перегрузки в цепи и короткого замыкания. Предохранители.

Магнитное поле. Установление связи между электрическим током и магнитным полем. Опыт Эрстеда. Магнитное поле прямого тока.

Магнитные линии магнитного поля. Магнитное поле катушки с током. Способы изменения магнитного действия катушки с током. Электромагниты и их применение. Испытание действия электромагнита. Постоянные магниты. Взаимодействие магнитов. Объяснение причин ориентации железных опилок в магнитном поле. Магнитное поле Земли. Действие магнитного поля на проводник с током. Устройство и принцип действия электродвигателя постоянного тока. Однородное и неоднородное магнитное поле.

Направление тока и направление линий его магнитного поля. Правило буравчика.

Обнаружение магнитного поля. Правило левой руки.

Индукция магнитного поля Магнитный поток. Электромагнитная индукция.

Генератор переменного тока. Преобразования энергии в электрогенераторах. Экологические проблемы, связанные с тепловыми и гидроэлектростанциями.

Источники света. Естественные и искусственные источники света. Точечный источник света и световой луч. Прямолинейное распространение света. Закон прямолинейного распространения света. Образование тени и полутени. Солнечное и лунное затмения. Явления, наблюдаемые при падении луча света на границу раздела двух сред. Отражение света. Закон отражения света. Обратимость световых лучей. Плоское зеркало. Построение изображения предмета в плоском зеркале. Мнимое изображение. Зеркальное и рассеянное отражение света. Оптическая плотность среды. Явление преломления света. Соотношение между углом падения и углом преломления. Закон преломления света. Показатель преломления двух сред. Строение глаза. Функции отдельных частей глаза. Формирование изображения на сетчатке глаза.

10 класс

Основные положения МКТ и их опытное обоснование. Броуновское движение. Масса и размер молекул. Основное уравнение МКТ для идеального газа. Температура и ее измерение. Степени свободы. Опыт Штерна. Распределение молекул газа по скоростям.

Уравнение Менделеева-Клапейрона. Изопроцессы идеального газа. Насыщенные и ненасыщенные пары. Диаграмма равновесных состояний. Кипение. Влажность воздуха, ее измерение. Свойства поверхности жидкости. Поверхностное натяжение. Лапласовское давление. Смачивание и несмачивание. Капиллярные явления. Кристаллические и аморфные тела. Виды деформаций твердых тел. Закон Гука. Упругость. Пластичность. Диаграмма растяжения. Применение деформаций в технике. Физические основы создания новых материалов с заранее заданными свойствами

Первый закон термодинамики и его применение к изопроцессам. Адиабатный процесс. Уравнение Майера. Необратимость тепловых процессов. Принцип действия тепловых двигателей и холодильной машины. Цикл Карно. КПД тепловых двигателей. Тепловые двигатели и проблемы экологии.

Дискретность электрического заряда. Опыт Иоффе – Милликена. Закон сохранения электрического заряда. Закон Кулона. Напряженность электрического поля. Силовые линии электрического поля и их свойства. Теорема Остроградского – Гаусса. Проводники в электрическом поле. Диэлектрическая проницаемость среды. Работа электрического поля при перемещении заряда. Разность потенциалов. Потенциал. Напряжение. Связь между напряжением и напряженностью однородного электрического поля. Потенциал поля точечного заряда. Измерение разности потенциалов. Эквипотенциальные поверхности. Электроемкость уединенного проводника. Конденсатор и его электроёмкость. Последовательное и параллельное соединения конденсаторов. Энергия электрического поля.

Закон Ома для однородного участка цепи. Добавочное сопротивление. Шунт. Электродвижущая сила. Закон Ома для участка цепи, содержащего источник. Закон Ома для полной цепи. Правила Кирхгофа.

Гипотеза Ампера. Вектор магнитной индукции. Линии вектора магнитной индукции и их свойства. Закон Био-Савара-Лапласа. Магнитные свойства веществ. Ферромагнетики, парамагнетики и диамагнетики. Сила Ампера. Взаимодействие параллельных проводников с током. Единица силы тока — "Ампер". Электроизмерительные приборы. Электродвигатель. Сила Лоренца. Ускоритель. Масс — спектрограф.

Проводимость металлов. Опыт Мандельштама — Папалекси. Элементы зонной теории проводимости металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость. Электрический ток в полупроводниках. Электропроводность полупроводников и ее зависимость от температуры. Терморезистор. Электроннодырочный переход. Диод. Транзистор. Электрический ток в вакууме. Термоэлектронная эмиссия. Вакуумный диод. Триод. Электронно-лучевая трубка. Электрический ток в расплавах и растворах электролитов. Законы Фарадея для электролиза. Применение электролиза (гальваностегия, рафинирование, гальванопластика). Электрический ток в газах. Несамостоятельный и самостоятельный разряды. Виды самостоятельного разряда. Плазма и ее свойства. МГД — генератор.